作者:王一哲
日期:2019/8/5
前言
物理科及化學科在處理實驗數據時,通常會先繪製 XY 散佈圖,如果資料點看起來有線性的關係,就要用最小平方法計算最接近直線的斜率和截距,再試著解釋斜率和截距的物理意義。但如果更講究一點,由於測量數據時本身就會有一定的不準量,最接近直線的斜率、截距也會有不準量,要用什麼方法才能很方便地算出這些數呢?
最接近直線公式
以下的公式是我從物理奧林匹亞培訓講義上抄來的。假設操縱變因(自變數)為$x$、不準量為$\Delta x$,測量的應變變因(應變數)為$y$、不準量為$\Delta y$,數據共有$n$組。則最接近直線
$$斜率 \quad a = \frac{\sum x \sum y - n \sum xy}{(\sum x)^2 - n \sum x^2}$$
$$截距 \quad b = \frac{\sum x \sum xy - \sum y \sum x^2}{(\sum x)^2 - n \sum x^2}$$
$$相關係數 \quad R = \frac{\sum x \sum y - n \sum xy}{\sqrt{\left[ (\sum x)^2 - n \sum x^2 \right] \left[ (\sum y)^2 - n \sum y^2 \right]}}$$
為了要計算斜率及截距的不準量,我們先定義下列的符號
$$\sigma_x = \sqrt{\frac{\sum (\Delta x)^2}{n}}$$
$$\sigma_y = \sqrt{\frac{\sum (\Delta y)^2}{n}}$$
$$\sigma = \sqrt{\sigma_y^2 + a^2 \sigma_x^2}$$
斜率與截距的不準量分別為
$$斜率的不準量 \quad \Delta a = \sqrt{\frac{n \sigma^2}{n \sum x^2 - (\sum x)^2}}$$
$$截距的不準量 \quad \Delta b = \sqrt{\frac{\sigma^2 \sum x^2}{n \sum x^2 - (\sum x)^2}}$$
如果要將$x$軸的不準量$\Delta x$加到$y$軸上,等效的$y$軸不準量計算方式為
$$\Delta y_{eff} = \sqrt{(\Delta x)^2 + (a \Delta y)^2}$$