日期:2024年7月8日
原理
當電路上只有電池與電阻器,但又不是單純的串聯、並聯電路時,可以利用克希荷夫定律 (Kirchhoff's circuit laws) 求所有的分支電流。克希荷夫定律有兩個定則
- 節點定則:對於電路上的某個節點而言,流入、流出的電流量值相等,實際上就是電荷守恆。
- 迴路定則:對於電路上的某個迴路而言,繞一圈回到出發點時電位相等,實際上就是能量守恆。
由圖中右方的節點可得 $$ i_1 = i_2 + i_3 $$ 由上方的迴路可得 $$ \varepsilon_1 - i_1 R_1 - i_2 R_2 = 0 $$ 由下方的迴路可得 $$ -i_3 R_3 - \varepsilon_2 - \varepsilon_1 + i_2 R_2 = 0 $$ 整理以上3式可得 $$ \begin{cases} i_1 - i_2 - i_3 = 0 \\ i_1 R_1 - i_2 R_2 = \varepsilon_1 \\ i_2 R_2 - i_3 R_3 = \varepsilon_1 + \varepsilon_2 \end{cases} ~\Rightarrow~ \begin{cases} 1 \cdot i_1 + (-1) \cdot i_2 + (-1) \cdot i_3 = 0 \\ R_1 \cdot i_1 + (-R_2) \cdot i_2 + 0 \cdot i_3 = \varepsilon_1 \\ 0 \cdot i_1 + R_2 \cdot i_2 + (-R_3) \cdot i_3 = \varepsilon_1 + \varepsilon_2 \end{cases} $$ 如果轉換成矩陣型式 $$ \begin{bmatrix} 1 & -1 & -1 \\ R_1 & R_2 & 0 \\ 0 & R_2 & -R_3 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ i_3 \end{bmatrix} = \begin{bmatrix} 0 \\ \varepsilon_1 \\ \varepsilon_1 + \varepsilon_2 \end{bmatrix} $$ 假設代入的數值分別為 $$ R_1 = 100 ~\mathrm{\Omega},~ R_2 = 200 ~\mathrm{\Omega},~ R_3 = 300 ~\mathrm{\Omega},~ \varepsilon_1 = 3 ~\mathrm{V},~ \varepsilon_2 = 4 ~\mathrm{V} $$ 電流分別為 $$ i_1 = \frac{1}{1100} ~\mathrm{A},~ i_2 = \frac{4}{275}~\mathrm{A},~ i_3 = -\frac{3}{220} ~\mathrm{A} $$